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Introduction

Various respiratory viruses, including those causing influenza-like illnesses, have the 
potential to lead to epidemics. Notably, during the COVID-19 pandemic, instances of 
SARS-CoV-2 infections co-occurring with influenza, RSV, and/or adenoviruses were 
observed. Recognizing and identifying such co-infections is crucial for tailoring targeted 
treatment strategies, mitigating the risk of misdiagnosis, and gaining insights into the 
disease's progression.

We propose to use Surface-Enhanced Raman Spectroscopy (SERS) as a platform with 
its fingerprint SERS peaks, to differentiate and quantify mixed viruses in co-infected 
specimens. By leveraging deep machine learning to help differentiate and quantify SERS 
spectra of potential viruses in patient specimens, we aims to create a database of SERS 
spectra to build a deep learning model to simultaneously differentiate and quantify 
different virus species in a biological mixture such as saliva.

Objectives

• Construct a SERS spectral database of virus mixtures with different concentrations 
from thirteen virus species by collecting SERS spectra from AgNR@SiO2 SERS 
substrates. 

• Build a CNN-based deep learning model (MixNet) to predict both the virus species and 
concentrations from single viruses, two-virus mixtures and three-virus mixtures.

Detection and database strategy

Construction of SERS spectral database:

• Individual viruses:
• 13 respiratory viruses (SARS-CoV-2, SARS-CoV-2 B1, CoV-OC43, CoV-NL63, CoV-

229E, Flu B, H1N1, H3N2, HNPV-A, HMPV-B, RSV-A2, RSV-B1, and Ad5).
• The viruses were diluted to concentrations ranging from 102 to 105 PFU/mL.

• Two-virus mixtures:
• Viruses with unique SERS peaks: 7 sets of mixtures (CoV-NL63 & RSV-A2, CoV-NL63

& RSV-B1, CoV-NL63 & H3N2, H1N1 & RSV-A2, H1N1 & RSV-B1, H3N2 & RSV-A2,
and H3N2 & RSV-B1).

• Highly similar viruses: 1 mixture set (CoV-NL63 & Flu B).
•  Virus A and Virus B were formulated into 11 concentrations ranging from 102 to 

105 PFU/mL.
• Three-virus mixtures:

• 4 sets of mixtures: CoV-NL63 & H1N1 & RSV-A2, CoV-NL63 & H1N1 & RSV-B1, CoV-
NL63 & H3N2 & RSV-A2, and CoV-NL63 & H3N2 & RSVB1.

• Virus A, Virus B, and Virus C were made into 7 or 8 different concentrations, 
spanning from 195 to 105 PFU/mL.

Fig. 1. Schematic illustration of deep learning-based virus mixture differentiation: specimen preparation and SERS 
measurements to obtain SERS spectra, as well as classification and quantification using deep learning models.

Understanding SERS spectra of virus mixtures

Fig. 3. (A) Average SERS spectra of H1N1, RSV-A2, and two mixtures of H1N1 and RSV A2, the value in the parenthesis 
is the concentration of the virus with the unit PFU/mL; (B) The peak intensity ratio for virus mixtures with fixed H1N1 
concentration and varied RSV-A2 concentration (black data points), as well as virus mixtures with CH1N1 = CRSV-A2 and 
varied RSV-A2 concentration (red data points).

Fig. 2. (A) The representative SERS 
spectra of 13 single viruses with 
concentrations of 105 PFU/mL.
(B) 8 two-virus mixtures with both 
concentrations of 105 PFU/mL.

(C) Representative SERS spectra of 
H1N1, RSV-A2, and their mixtures; 
representative SERS spectra of CoV-
NL63, Flu B, and their mixtures.
(D) 4 three-virus mixtures with all 
components having concentrations of 
105 PFU/mL; representative SERS 
spectra of CoV-NL63, H1N1, RSV-B1, 
and their mixtures.

Classification using deep learning model 

Fig. 4. (A) The architecture of deep learning model “MixNet” for multi-class classification and regression. (B) and 
(C) Loss curves for classification (Cross entropy) and regression (MAE) during model training and validation.

Conclusions

We have created a label-free diagnostic platform that utilizes SERS and 
deep learning to detect mixtures of respiratory virus species quickly and 
accurately. The platform can detect 13 single virus species, 8 dual virus 
species, and 4 triple virus species. We also developed a deep learning 
model called MixNet, which can classify and quantify virus mixtures. The 
model can predict not only the types of viruses in the mixtures with 89% 
accuracy but also the absolute concentration of each virus in the mixture. 
These results demonstrate the effectiveness of the SERS + deep learning 
approach in diagnosing complex infectious specimens.
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Regression using deep learning model

The unique peaks of the 
component viruses will 
appear in the mixture 
spectra, no matter if the 
components are similar 
(CoV-NL63 & Flu B) or not 
(H1N1 & RSV-A2).

If two mixtures are identical 
in one component and 
similar in the other (e.g., 
H3N2 & RSV B1, H3N2 & 
RSV-A2), the spectra of the 
mixtures will be similar.

It is expected that the relative peak intensities unique to the two viruses changes with 
the relative concentration of the viruses. Figure 3A plots the normalized average spectra 
of H1N1 & RSV-A2 for different RSV-A2 concentrations. Though all these three 
characteristic peaks were observed in the spectra of the mixtures, their relative peak 
intensities from the same spectrum vary due to the change of the concentration ratios. 

Figure 3B shows a semi-log plot of the peak ratio I1503/I638 versus the  log [CRSV-A2] and 
a linear relationship appeared. For the mixture with CH1N1 = CRSV-A2, I1503/I638 does not 
change with CRSV-A2 in a certain concentration region as shown in red data points.

Fig. 5. Confusion matrix of the MixNet model for mixture classification. Entries in the matrix represent the 
percentage of test spectra that were predicted by the MixNet model as class (first row) given a ground truth of class 
(first column); entries along the diagonal represent the accuracies for each class. 

The accuracy in the test set is 0.89.
A virus is prone to be misclassified to another virus when they have  similar spectral 

shape, such as HMPVA and HMPVB. A mixture is prone to be misclassified to a mixture 
with  similar components, such as H1N1 & RSV-A2 mixture and H3N2 & RSV-A2 mixture, 
or with one of its components, such as H1N1 & RSV-A2 mixture and RSV-A2. 

The deep learning model - MixNet 

Fig. 6. Regression results of deep learning model for detection of thirteen viruses in saliva for single 
viruses: (A) Ad5, (B) CoV-NL63, (C) CoV-2, (D) H3N2; two-virus mixtures: (E) CoV-NL63 & Flu B, (F) 
CoV-NL63 & H1N1, (G) CoV-NL63 & RSV-A2, (H) CoV-NL63 & RSV-B1; three-virus mixtures: (I) CoV-
NL63 & H1N1 & RSV-A2, (J) CoV-NL63 & H3N2 & RSV-A2, (K) CoV-NL63 & H1N1 & RSV-B1, (L) CoV-
NL63 & H3N2 & RSV-A2. The x-axis is the logarithm of actual concentration of testing spectra, and y-
axis is the logarithm of the predicted concentration of testing spectra. The dash line represents the 
predicted concentration Cpre is identical to actual concentration Cact, i.e., perfect prediction.

Examples of regression results are plotted in Figure 6 in log-log scale. The 
predicted concentrations for virus mixtures all follow the linear relationship 
log(Cpre) = log(Cact), with small MAEs and R2 > 0.8.

In general, higher quantification accuracies can be observed from single 
virus compared to those with virus mixtures. This is understandable since 
larger variation shall be presented due to the similarity in virus spectra, 
especially in mixture specimens.

In addition, for specimens with low concentrations (≤195 PFU/mL), either of 
single viral specimens or mixtures, there is a large difference between Cpre and 
Cact, which is due to the interference of background medium as well as the 
noise. 
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