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Introduction

The per- and polyfluoroalkyl substances (PFASs) are a diverse class of over 3000 
chemicals in use since the 1950s in industrial and consumer products. They came under 
regulatory and scientific scrutiny due to high bioaccumulation and persistence in the 
environment, as well as toxicity. Current EPA proposed standard requires a detection limit 
of PFAS close to 4 ppt, which imposes a significant challenge for current detection 
methods.  Surface-enhanced-Raman scattering (SERS) spectroscopy is a very promising 
technology to address the challenges of PFAS detection.  However, there are three 
challenges associated with SERS-based PFAS detection. First, high high-enhancement SERS 
substrates are required to provide adequately strong signals for the desired limits of 
detection. Second, the affinity of PFAS molecules to the designed SERS substrates shall be 
strong enough to demonstrate good SERS signals. Different substrates may have varying 
affinities with different analytes depending on their interactions. Finally, the SERS spectra 
from different PFAS molecules must be distinguishable. Many PFAS molecules have 
remarkably similar molecular structures, which can result in similar SERS or Raman 
spectra. 

Objectives

• Show that the Raman spectra of different PFAS molecules, even with the same 
functional groups but different carbon chain numbers, are able to be used to 
differentiate the PFAS in solution.

• Integrate SERS with machine learning (ML) to differentiate and quantify various PFAS 
compounds in water and methanol.

• Use thiol-modified SERS substrates to improve the differentiation and quantification 
capabilities of the SERS-ML method. 

Fabrication of AgNR substrates

Glass microscope slides were cut into 0.5-inch × 0.5-inch square pieces. Followed by a 
standard cleaning procedure. Before SERS measurements, the AgNR substrates were 
cleaned by argon plasma for 90 seconds. Figure 1a illustrates the geometry of the AgNR 
array SERS substrate.

To improve the affinity of PFAS molecules to AgNR substrate, it may be advantageous 
to put a self-assembled thiol molecule layer on the surface to change the surface charge 
as shown in Figure 1b. 

It is envisioned that when PFAS molecules are dispensed on the thiol-modified 
surface, they will be aligned in a certain way according to electrostatic interaction, as 
shown in Figure 1c. 

Fig. 1 (a) Illustration of Ag nanorods on a glass substrate. (b) A self-assembled monolayer of thiol molecules coats the 
nanorods. (c) The charged PFAS molecules are electrostatically attracted to the thiol molecule monolayer.

SERS spectra of PFASs on AgNR substrates

Fig. 2. (a) The average SERS spectra of selected PFAS solutions (in methanol) at a fixed 103 ppt concentration. The 
average SERS spectrum of AgNR substrate is shown as a reference. (b) The t-SNE plot of the SERS.

SERS spectra of PFASs on MCH-functionalized substrates

Fig. 5. The average SERS spectra from MCH-modified AgNR substrates: (a) PFOA of concentrations of 0, 10-1, 100, 101, 
102, 103, 104, 105, 106, 107, 108, and 109 ppt (from bottom to top); and (b) PFOS with concentrations of 0, 4.28×10-2, 
4.28×10-1, 4.28, 4.28×101, 4.28×102, 4.28×103, 4.28×104, 4.28×105, 4.28×106 ppt (from bottom to top). 

Conclusions

Our study demonstrates the effectiveness of utilizing SERS spectra 
and machine learning techniques for the detection and differentiation of 
various PFAS. We have successfully differentiated and quantified the 
amounts of PFOA in water, enabling highly sensitive PFAS detection.

To further improve differentiation and quantification, we employed 
various Alkanethiol molecules to modify the AgNR substrates. Although 
the spectral features were dominated by the Alkanethiol molecules, 
discernible changes due to the presence of different concentrations of 
PFAS and PFOS molecules were observed.

Leveraging an SVM model, we achieved an average accuracy of 93% 
accuracy in differentiating PFOA, PFOS, and MCH. Once the spectra were 
accurately classified, further quantification was achieved through an SVR 
model, capable of predicting concentrations as low as 1 ppt for PFOA and 
4.28 ppt for PFOS.
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Results after removing low concentrations

Fig. 8. (a) The SVM classification confusion matrix for PFOS, PFOA, and reference samples after 
removing the low concentrations. A: different concentrations of PFOA; B: different concentrations 
of PFOS; and C: MCH-modified AgNR substrates. (b) and (c) the log-log plot of Cpre versus Cact of 
PFOA and PFOS via two independent SVR models after removing the low concentrations, 
respectively.

Figure 2a shows the average SERS spectra of 103 ppt PFOS, PFOA, PFNA, PFDA, and 
HFPO-DA in methanol.

t-SNE analysis was implemented is shown in Figure 2b. The SERS spectra can form 
well-separated clusters, which demonstrates a clear differentiation capability of SERS. 

Fig. 3 (a) The representative average SERS spectra of PFOA in methanol at the concentrations of 100, 101, 103, 106, 107, 
and 108 ppt, respectively. (b) The semi-log plot of the peak intensities at Δ𝜈= 333, 485, 682, 934 cm-1 versus PFOA 
concentration CPFOA.  (c) The log-log plot of Cpre versus Cact of PFOA via an optimal SVR model.

In order to demonstrate the quantification capability of SERS, concentration-dependent 
SERS spectra of PFOA have been measured, shown in Figure 3a.

Traditional method (Figure 3b): plot the SERS intensities of characteristic peaks as a 
function of concentration. The relationship exhibits significant variations, making it difficult 
to differentiate the concentration based on these peaks. 

To circumvent this problem, we can apply ML-based regression models. A support 
vector regression (SVR) model was used to predict the concentration. Figure 3c shows a 
log-log plot of the predicted concentration versus the actual concentration. The average R2 
value resulting from 10 independent trials was 0.95 ± 0.01, denoting an excellent fit.

Fig. 6. (a) t-SNE result for PFOS (pink), PFOA (grey), and reference (blue) samples, including spectra from all 
concentrations. (b) The SVM classification confusion matrix for PFOS, PFOA, and reference samples. A: different 
concentrations of PFOA; B: different concentrations of PFOS; and C: MCH-modified AgNR substrates. 

Fig. 7. The log-log plot of Cpre versus Cact of (a) PFOA and (b) PFOS via two independent SVR models, respectively.

MCH is a short-chain Alkanethiol molecule with an end group of -OH. When the AgNR 
surface is functionalized with MCH, the surface will be negatively charged. 

To demonstrate the capabilities of ML models, a more powerful SVM model with an 
RBF kernel was employed. Ten independent trials were conducted, resulting in an 
accuracy of 0.89 ± 0.01. The trial with the highest accuracy (0.93) is demonstrated by the 
confusion matrix shown in Figure 6b. 

Two separate SVR models were built to quantify concentration-dependent PFOA and 
PFOS spectra. Ten independent trials were performed for each SVR. The R² for PFOS and 
PFOA are 0.76 ± 0.04 and 0.82 ± 0.01, the best trials are plotted in Figures 7a and 7b. By 
employing one-sample t-tests, the SVR model for PFOA achieved an LOD of 1 ppt, with a 
p-value of 0.37, while the LOD for PFOS was determined as 4.28 ppt, with a p-value of 
0.10. 

As illustrated in Figure 8a, by excluding concentrations below the LOD, 3 
of the 5 misclassified PFOS spectra were eliminated. The overall model 
accuracy is lifted from 0.93 to 0.95.

The R2 scores for PFOA and PFOS by the regression models would 
experience only marginal improvements, rising from 0.85 to 0.88 and from 
0.83 to 0.85, as shown in Figures 8b and 8c. 

SERS spectra of PFASs on cysteine-functionalized substrates

Fig. 4. The SERS spectra of (a) concentrations of 1000 ppm (109 ppt), (b) 10 ppb (104 ppt), and (c) 0.01 ppt of PFOA and 
PFOS on cysteine-modified AgNR substrates and the corresponding (a', b', c') t-SNE plots. In all figures, the colors red, 
blue, and black represent PFOA, PFOS, and water on cysteine-modified AgNR substrates. 

Stability of MCH-functionalized AgNR substrates

Fig. 9. (a) The averaged spectra of AgNR substrates with an MCH monolayer and PFOA applied. 
Measurements were taken on the day of creation (black), 1 week after creation (red), and 2 weeks 
after creation (blue). (b) The intensity of 3 peaks over 2 weeks: ∆ν= 710 cm-1 (black), 878 cm-1 (red), 
and 1089 cm-1 (blue).
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